Books Of India Blog

Machine Learning

Ebook ( 20 percent less than INR ): 480
Pages: 294
Size: 7.5*9.25 Inches
Release Date: 16-Sep-2021
Binding: Paperback


Machine Learning
Master Supervised and Unsupervised Learning Algorithms with Real Examples
Dr Ruchi Doshi, Dr Kamal Kant Hiran, Ritesh Kumar Jain, Dr Kamlesh Lakhwani
Concepts of Machine Learning with Practical Approaches.
● Includes real-scenario examples to explain the working of Machine Learning algorithms.
● Includes graphical and statistical representation to simplify modeling Machine Learning and Neural Networks.
● Full of Python codes, numerous exercises, and model question papers for data science students.
The book offers the readers the fundamental concepts of Machine Learning techniques in a user-friendly language. The book aims to give in-depth knowledge of the different Machine Learning (ML) algorithms and the practical implementation of the various ML approaches.
This book covers different Supervised Machine Learning algorithms such as Linear Regression Model, Naïve Bayes classifier Decision Tree, K-nearest neighbor, Logistic Regression, Support Vector Machine, Random forest algorithms, Unsupervised Machine Learning algorithms such as k-means clustering, Hierarchical Clustering, Probabilistic clustering, Association rule mining, Apriori Algorithm, f-p growth algorithm, Gaussian mixture model and Reinforcement Learning algorithm such as Markov Decision Process (MDP), Bellman equations, policy evaluation using Monte Carlo, Policy iteration and Value iteration, Q-Learning, State-Action-Reward-State-Action (SARSA). It also includes various feature extraction and feature selection techniques, the Recommender System, and a brief overview of Deep Learning.
By the end of this book, the reader can understand Machine Learning concepts and easily implement various ML algorithms to real-world problems.
● Perform feature extraction and feature selection techniques.
● Learn to select the best Machine Learning algorithm for a given problem.
● Get a stronghold in using popular Python libraries like Scikit-learn, pandas, and matplotlib.
● Practice how to implement different types of Machine Learning techniques.
● Learn about Artificial Neural Network along with the Back Propagation Algorithm.
● Make use of various recommended systems with powerful algorithms.
This book is designed for data science and analytics students, academicians, and researchers who want to explore the concepts of machine learning and practice the understanding of real cases. Knowing basic statistical and programming concepts would be good, although not mandatory.
1.  Introduction
2. Supervised Learning Algorithms
3. Unsupervised Learning
4. Introduction to the Statistical Learning Theory
5. Semi-Supervised Learning and Reinforcement Learning
6. Recommended Systems


Machine learning, Supervised learning, Unsupervised learning, Reinforcement learning, Recommended systems, Artificial Neural Network, Deep learning
Machine learning, Supervised learning, Unsupervised learning, Reinforcement learning, Recommended systems, Artificial Neural Network, Deep learning, Perceptron, Markov Decision Process, Bellman equations, Regression, Monte Carlo Methods, Back Propagation Algorithm, Clustering, Recommended systems
ISBN: 9789391392352
eISBN: 9789391392406
BISAC ( 3 BISAC CODES REQUIRED, please refer )
COM032000, COM051010, COM014000,


COM032000 COMPUTERS / Information Technology
COM051010 COMPUTERS / Languages / General
COM014000 COMPUTERS / Computer Science
Dr Ruchi Doshi has more than 14 years of academic, research, and software development experience in Asia and Africa. Currently, she is working as a research supervisor at the Azteca University, Mexico, and as an adjunct faculty at the Jyoti Vidyapeeth Women’s University, Jaipur, Rajasthan, India. She has also worked with the BlueCrest University College, Liberia, West Africa as a Registrar and Head, Examination; BlueCrest University College, Ghana, Africa; Amity University, Rajasthan, India; Trimax IT Infrastructure & Services, Udaipur, India.
She has been nominated from the IEEE Headquarters, USA for the Chair, Women in Engineering and Secretary Position in Liberia country. She worked with the Ministry of Higher Education (MoHE) in Liberia and Ghana for the approval of degrees and accreditations processes. She is interested in the field of Machine Learning and Cloud computing framework development. She has published numerous research papers in peer-reviewed international journals and conferences. She is a Reviewer, Advisor, Ambassador, and Editorial board member of various reputed International journals and conferences. She is an active member in organizing many international seminars, workshops, and conferences in India, Ghana, and Liberia.


Kamal Kant Hiran works as an Assistant Professor, School of Engineering at the Sir Padampat Singhania University (SPSU), Udaipur, Rajasthan, India as well as a Research Fellow at the Aalborg University, Copenhagen, Denmark. He is a Gold Medalist in M.Tech. (Hons.). He has more than 16 years of experience as an academic and researcher in Asia, Africa, and Europe. He worked as an Associate Professor and Head of Academics at the BlueCrest University College, Liberia, West Africa; Head of Department at the Academic City College, Ghana, West Africa; Senior Lecturer at the Amity University, Jaipur, Rajasthan, India; Assistant Professor at the Suresh Gyan Vihar University, Jaipur, Rajasthan, India; Visiting Lecturer at the Government Engineering College, Ajmer.
He has several awards to his credit such as an International travel grant for attending the 114th IEEE Region 8 Committee meeting in Warsaw, Poland; International travel grant for Germany from ITS Europe, Passau, Germany; Best Research Paper Award at the University of Gondar, Ethiopia and SKIT, Jaipur, India; IEEE Liberia Subsection Founder Award; Gold Medal Award in M. Tech (Hons.); IEEE Ghana Section Award – Technical and Professional Activity Chair; IEEE Senior Member Recognition, IEEE Student Branch Award, Elsevier Reviewer Recognition Award, and the Best Research Paper Award from the University of Gondar, Ethiopia. He has published 35 scientific research papers in SCI/Scopus/Web of Science and IEEE Transactions Journal, Conferences, 2 Indian Patents, and 9 books with internationally renowned publishers. He is a reviewer and editorial board member of various reputed International Journals in Elsevier, Springer, IEEE Transactions, IET, Bentham Science, and IGI Global. He is an active member in organizing many international seminars, workshops, and conferences. He has made several international visits to Denmark, Sweden, Germany, Poland, Norway, Ghana, Liberia, Ethiopia, Russia, Dubai, and Jordan for research exposures. His research interests focus on Cloud Computing, Machine Learning, and Intelligent IoT.


Ritesh Kumar Jain works as an Assistant Professor, at the Geetanjali Institute of Technical Studies, (GITS), Udaipur, Rajasthan, India. He has more than 15 years of teaching and research experience. He has completed his BE and MTech. He has worked as an Assistant Professor and Head of the Department at S. S. College of Engineering. Udaipur; Assistant Professor at Sobhasaria Engineering College, Sikar; Lecturer at the Institute of Technology & Management, Bhilwara.
He is a reviewer of international peer-review journals. He is the author of several research papers in peer-reviewed international journals and conferences.


Dr. Kamlesh Lakhwani works as an Associate Professor, in Computer Science & Engineering at JECRC University Jaipur, Rajasthan, India. He has an excellent academic background and a rich experience of 15 years as an academician and researcher in Asia. As a prolific writer in the arena of Computer Sciences and Engineering, he penned down several learning materials on C, C++, Multimedia Systems, Cloud Computing, IoT, Image Processing, etc. He has four published patents to his credit and contributed more than 50 research papers in the conferences/journals/ seminars of International and National repute. His area of interest includes Cloud Computing, theInternet of Things, Computer vision, Image processing, video processing, and Machine Learning.LinkedIn Profile: